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The following work has been accomplished under the grants AFOSR-80-0245,

80-0245A, 80-0245B, 80-0245C and 80-0245D.

A). SHOCK AND WEAR PROCESSES.

A device is subject to shocks causing damage. Let, Xt denote the

cumulative damage the device suffers during the interval (O,t] plus the

initial damage at time 0. It is clear that this will be a right continuous

and increasing stochastic process. Every jump of this process has the inter-

pretation of being the damage due to a shock at the time of the jump. Assume

that Xt  is a nonstationary Levy process. The Poisson random measure

generating the Levy process and describing the shock times and their damage

magnitude has a mean measure v(dt,dz) of the form A(dt)v(dz);J (zAl)1i(dz) < .

0

This piicess is assumed to be defined on some probability space (Q,F,P). The

device has a certain threshold Y defined on another probability space

(0,F,P). The device fails when the damage first exceeds the threshold. The

failure time defined on Q x R' according to the following:

(w,w') =inf{t)O:X t(w) -Y(w')}. Let G(y) be the probability that

threshold Y exceeds or equal to y, y)O. Then for tO and x' O the

survival probability F (t) is given by F (t) = E x[G(X )].x x x t

Then, the following holds:

i) if G has increasing failure rate and A is convex and 1,i << leb.

with density f that is a P61ya frequency function of order two. then F (t)

has increasing failure rate for each x>O; E

ii) if G has a decreasing failure rate and A is concave, then Fx

has a decreasing failure rate for each xO;" Codes

Dist /~dorsp.iaj
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iii) if G has increasing failure rate average and A is starshaped;

then F has increasing failure rate average for each xO;x

iv) if G has decreasing failure rate average and A is antistarshared

u << leb. with PF2  density, then F has decreasing failure rate averagex

for each x>O;

v) if G is better than used and A is superadditive, then for each

xc (0,1) and x,t,s 0; we have

F (t+s)<F (t)F (S)xx(I -a

In particular F0 is new better than used.

vi) if G is new worse than used and A is subadditive, then F is
x

new worse than used.

Mocover, when C depends both on the accumulated damage and time then

the following holds:

i) if the map x- G(x,t) has increasing failure rate average for each

t)0, the map t -G(x,t) is decreasing for each x>O, and A is starshaped,

then F has increasing failure rate average for each x>O;x

ii) if the map x -G(x,t) has decreasing failure rate average, the map

t-G,(x,t) is increasing for each x>0, A is antistarshaped and P< < leb.

with PF2  density, then F (t) has decreasing failure rate average for each
0

x ) 0;

iii) if the map (x,t) -G(x,t) satisfied G(x+y,t+s)<G(x,t)G(y,s)

for each x,y,t,s0, A is superadditive, then for each x,t,s>O and

ac (0,1) we have

T(t+s)<F (t)F (s).x Fix (t-



In particular F0 is new better than used.

iv) if the map (x,t)- G(x,t) satisfies the property

G(x+y,t+s)>-G(x,t)G(y,s) for each x,y,t,s>0 and A is subadditive,

then F is new worse than used for each x >0.
x

B). OPTIMAL MAINTENANCE AND REPLACEMENT POLICIES.

Suppose that a device is subject to shocks causing damage. Damage

accumulates and the accumulated damage can be described as a Levy process with

man measure v(dt,dz) of the form dtp(dz). This simply means that the

process has stationary independent increments. Assume that the device can be

replaced before or at failure. Replacements at failure costs c dollars. If

the device is replaced before failure a smaller cost is incurred. The cost

depends on the accumulated damage at the time of replacement, and is denoted

by c(.). Let X denote the accumulated damage till time t. For any

Markovian replacement policy T, the average cost per unit time, VT is of

the form:

* (x) = {Ex [c(x )I(T < +CPx (c >)}/Ex (r), for each x>0. Let

c (X) =c-c(x), x)0;c(+.) = 0  and note that

T(x) = (C- Ex [cI(X T)]}/E x(T).

A Markovian replacement time Tx is called optimal if t *(x) = inf ()
x

where the infimum in the right hand side is taken over all Markovian replacement

times.

Let G c (x) denote the infinitisemal generator of the function

c (x),b(x) = inf PT (x) and assume that b >0. Then under the assumptions of

S1 'II ,10 1 1, 1 h 1



the finiteness of the average life time of the device and suitably chosen

conditions on the cost functions, we find that the optimal Markovian replace-

ment policy is a control policy of the form

T = inf{t O:X t[xx , C)AC,

where

ax = inf{y:b(x)+ Gc 1 (x+ y) < 0}.

The results reported on in B and C above have appeared in the paper

"Life distributions of devices subject to a Levy wear process", in

Mathematics of Operations Research.

C). POSITIVE DEPENDENCE OF COMPONENTS.

The area of monotone dependence of multivariate distributions has

attracted the attention of many authors over the past decade. In this research

we investigate covariance inequalities for a class of multivariate strongly

unimodal densities, i.e., the class of logarithmically concave densities.

Strong unimodal densities play an important role in probability as well as in

Statistics since they enjoy the monotone likelihood ratio property.

For n=l,2 .... , let

H = {f:Rn -R +:f is strongly unimodal and symmetric}n+

A ={A:A is nxn diagonal matrix with diagonal elements ±1}n

G = {f E H :f(xA)= f(x) for all xc Rn and all Ac A },n n - - -n

L = {K:K is a convex symmetric subset of Rn}.

We show that for a certain class of unimodal vectors the random variables



f(X) and g(X) are positively correlated for all f and g in H . it- - n

follows in particular that if [X(t),t>01 is a Wiener process, then for

each t O, and each f,g in H the random variables f(X(t)) andn

g(X(t)) are positively correlated. We also obtain bounds on the right tail

probabilities of random vectors whose densities belong to classes containing

the above ones.

Details may be found in "Generating Positively Correlated Random

Variables from a Sequence of Independent Random Variables with Symmetric

Logarithmically Concave Densities", UNCC-Technical Report (1984)

D). LIFE DISTRIBUTION PROPERTIES OF DEVICES SUBJECT TO A PURE JUMP DAMAGE

PROCESS.

Suppose that a device is subject to damage, the amount of damage it

suffers, over time, is assumed to be an increasing pure jump process. We

denote such a process by XE (X ,t>0).

Cinlar and Jacob (1981) showed that there exists a Poisson random

measure on R + R+ whose mean measure at the point (s,z) is dsdz/z 2 and

a deterministic function c defined on the positive quadrant that is in-

crensin- in the second argument such that

E f(Xs,Xs)= f N(dsdz)f(Xs- +c(X s - 'f))
S < -t [0,t]xR+

almost everywhere for each function f on R+ x R+ with f(x,x) = 0 for all

x in R+. In particular, it follows that

X 0 + f N(dsdz)c(Xs_'z).

0,t]IxR+

The nSove formu1n has the following interpretation



t-X t(w) jumps at s if the Poisson random measure N(w,.) has an

atom (s,z) and then the jump is from the left-hand limit X (w) to the5-

right-hand limit

X =X + c(X ,z).S S- S-

The function c(x,z) represents the damage due to a shock of magnitude z

occuring at a time when the previous cumulative damage is equal to x.

Assume that the device has a threshold Y and it fails once the damage exceeds

or equal to Y. The failure time is therefore given by

=inf{t:X t Y}.

Let G be the right tail probability of the random variable Y. Then the

survival function is given by, for t>-O,

S(t) _ P(S>t)

=E[G(X )]

We show that life distribution properties of G are inherited as

corresponding properties of S. The following are samples of some of the

results obtained:

(1) Theorem. Suppose that the function c above satisfies the following

condition

c(.,z):R+ -R+ is increasing for each z O.

Then

i) S has increasing failure rate when G has increasing failure

rate and X has a totally positive density of order two;

ii) S has increasing failure rate on the average when G has an

increasing failure rate on the average and X has a totally positive density

a -



of order two;

iii) S is new better than used if C is new better than used.

(2) Theorem. Suppose that the function c satisfies the following condition

c(.,z):R+ R+ is decreasing for each zO.

Then

i) S has decreasing failure rate when G has decreasing failure rate

and X has a totally positive density of order two.

ii) S has a decreasing failure rate average when G has a decreasing

failure rate average and X has a totally positive density of order two.

iii) S is new worse than used when G is new worse than used and the

ftlnc'ion ,--Y +c(x,z) is an increasing function for each z)O.

(3) Theorem.

i) Suppose that G(.,t) has increasing failure rate average for each

t) O, the mapping G(x,.) is a decreasing function for each x0, X has

a totally positive density of order two, and c(.,z) is an increasing

functian for each z O. Then S has increasing failure rate average.

ii) Suppose that G(.,t) has a decreasing failure rate average for

each t0, the mapping G(x,.) is an increasing function for each x>O,

X has a totally positive density of order two and c(.,z) is a decreasing

function for each z O. Then S has a decreasing failure rate average.

2
iii) Suppose that V= -InG is a superadditive function on R +and

c(.,z) is an increasing function for each z)O. Then S is new better

than used.

siv) Suppose that V above is a subadditive function on R- while the

1%



function x -x+c(x,z) is decreasing for each z)O. Then S is new worse

than used.

We also discuss the optimal replacement problem for such devices.

Define, for tO,
X , t

Zt
+t , t

The nrocess Z= (Z t) is obtained by killing the process X at the failure

time of the device.

A device subject to the damage process Z can be replaced before or

at failure. Each replacement at failure costs c dollars, c> 0. The cost

of a replacement before failure depends on the damage level at the time of

replacement and is denoted by c(.). That is to say, c(x) is the cost of a

replacement when the damage level at time of replacement is equal to x.

Naturally, we assume that c(x) is increasing and bounded above by c. Let

(H t) be the canonical history of Z. Moreover, U denotes the class of

stopping times that do not exceed the life time C.

For any stopping time T in U we let denote the expected cost of

replacement per unit time. We are interested in finding the stopping time

T* in U satisfying

inf

That is to say, we want to find the stopping time in U that minimizes the

expected cost per unit time over U. We call such stopping time the optimal

replacement time. We give conditions on the cost function c(x) and the

damage function c(x,z) that guarantee that the optimal replacement policy

is a ccntrol-limit policy.

'Ii



The above results have appeared in the paper entitled "Life distribution

properties of devices subject to pure jump damage process", Journal of

Applied Probability.

E). A POWER TRANSFORMATION EXPONENTIAL REGRESSION MODEL FOR CENSORED FAILUR

TIME DATA.

Suppose that we have n items which are subject to failure. Let

T I , T,.,..., T be the random variables representing the failure time of the
- n

first, second, ... , n th item respectively. We assume that right censoring

may occur because of the need for early termination of the experiment and

let -,, T ..... T represent the recorded survival times. Defining
L - n

censoring indicator variables

I if T. is uncensored

1
w.

S 0 if T . is censored

we have

T. =T. if w. =1 and T.>T. if w. 0.1 1 1 1 1 1

We let

n n

nu = w. and n Z (1-w.)
u i c . 1

denote the numbers of uncensored and censored observations respectively.

Without loss of generality we label the individuals such that the first n* u

items have uncensored times to failuTe and the remaining n have censored
c

times to failure.

We now suppose that measurements are available on k explanatory

variab les X,X..... X . Setting 2x'= (x, x 2 ... X the
k'2

probbi;uility dcn;itv function and survival function of T given x are



denoted by f(t;2) and S(t;x) respectively. If the failure rate does not

depend on t, for any given x, T has the exponential distribution with

probability density function

V) exp(-t/li), t>0
F(t;x) = x

0 otherwise.

Various models have been proposed in the literature to represent the

dependence of p2 on x. Fiegel and Zelew (1965)

Consider the model from

x= (1 + x',

while Greenberg et al (1974) use the form

x= x

where k' = ( ... ,8k ) and A is a positive constant. Both models require

that the condition x'63>-I must be imposed to insure that pi >0. An

alternative model which does not require a constraint to be imposed on x'

is

1x A exp(x'O)

This model arises for the exponential case from the well-known family of

proportional hazard regression models (see e.g. Kay (1977)) in which an

assumed underlying hazard function is adjusted by multiplicative exponentail

factors to allow for the effect of the explanatory variables, Prentice (1973),

also discusses the use of cenisored regression models for the exponenti al case.

In this paper, we consider the power transformation model given by

lix = x (i+6 x'O) /



We refer to 6 as the power parameter. It is seen that when 6 =1, the

model corresponds to the model used by Fiegel and Zelew, while if 6=-i the

model proposed by Greenberg et al is obtained after appropriate renarameterisa-

tion. When 6- 0 the exponential model for p.x given above is obtained.

In general, the power parameter 6 as well as the coefficient vector 0

will have to be estimated from the data. We obtain maximum likelihood

estimators for these parameters and it is shown how the estimates can be

obtained using the statistical package G LIM. We also discuss the assessment

of the goodness of fit of the model and numberical examples are given to

illustrate the procedure.

Details may be found in "A Power Transformation Regression Model for

Censored Failure Time Data", UNCC - Technical report (1984).

F). CONSERVATIVE AND DISSIPATIVE PARTS OF NON-MEASURE PRESERVING WEIGHTED

COMPOSITION OPERATORS.

Earlier joint work with A. Lambert and T. Hoover on measure preserving

weighted composition operators is extended. The main result of this naper

implies that, if T:X X is a measurable transformation of a probability

space X onto X which is measure isomorphic to a measure preserving

transformation 7,:X- X then there exists a weight function O:X (0, -)

such that the operator T , f](x) =O(x)fo T(x) is conservative. Using this

result, it is possible to extend many results which were previously known only

for measure preserving weighted composition operators to the class of weighted

composition operators whose composition part is isomorphic to a measure

preserving transformation. In particular, the recent characterization of the

point spectrum for measure preserving weighted composition operators due to

A. Laribert, has a complete analogue for this wider class. These results have



appeared in the paper "Conservative and dissipative parts of nonmeasure

preserving weighted composition operators", Houston J. Math, 8, 575-586,

(1982).

G). STABILITY OF OPTIMAL STOPPING TIMES FOR MARKOV CHAINS AND THEIR

APPLICATIONS TO OPTIMAL REPLACEMENTS.

With respect to this discussion, a Markov Chain is a discrete time,

homogeneous, nonterminating Markov Process with values in a state space

1 1 2 2
(E,E). Two Markov chains X = (,xn ,F n,P X) and X2 = (,x n,Fn P ) are said

to be (c,F m)-close if, for each x E and Ge F,mm

(I - )I ((;) < 112 (C) (l + )P (G) and (1-)P (G) 3 1(G) ( + )P2 (G)
X x x x xX

where m (O,1,2,...,-} and e is in [0,I). If G is a class of bounded,

real valued reward functions and M is a class of Markov times, then X is

said to be (F ,G,M)- stable (c(F ,G,M) -stable) if for each a> 0 and
m m

g EG, there exists an E>0 and a $0 > 0  such that, if X (Qxn,F ,P )

is ( ,F )-close to X, then for any 0>B8 0 , T =inf{n/g(xn),s(x )- }
m n n

.inf~n/g(x n ) s(xn )- } is an (c,s)-optimal stooping time for X((a,s )-

optimal stopping time for X here, s and s are payoffs). Weaker

forms of stability result if the conclusion holds only for I in some interval

bounded away from 0. In the paper, M is either MF, the class of first

entry Markov times, or it is, for some n> 0, M(n), the class of stopping

times bounded by n.

If m= - or M =M(n), it is shown that all Markov chains are stable

in a very strong sense. If m<-, then the (FmG,MF) types of stability are

equivalent to corresponding (FIG,MF) types.

Examples are given of chains which are (FiG,MF)-stable and c(F1 ,G,MF)-

stable. An example is given of a chain that is weakly (F1,C,MF)-stable and

I II 1 ! 1 'l c



weakly c(FiG,MF)-stable but is not c(F 1 ,G,MF)-stable. Finally, an example

is given of a chain and a reward function g such that the chain is not stable

in any (FI,{g},MF) sense. The most useful theorem states that, if the g is

a reward function .and the MF-payoff associated with g is constant on the

orbits of X, then X is weakly (Fl,{1gMF)-stable and weakly c(FI,{g},MF)-

stable.

Details are available in "On the stability of optimal stopning times for

Markov Chains, UNCC-Technical Report (1981).

H). STABILITY OF OPTIMAL STOPPING TIME AND OPTIMAL REPLACEMENT PROBLEMS.

The investigations are restricted to stability for Markov processes which

are either standard processes in the sense of Bluementhal and Gretoor or are

Markov chains. For optimal stopping times, two broad classes of stability

are considered. A problem (X,g) is considered to be "c-stable", here X

is a process and g is a reward function defined on the state space of X,

if a close to optimal solution to the problem (X,g) is close to optimal for

any problem (X ,g) which is sufficiently "close" to the problem (X,g). The

other broad class of stability considered views (X,g) as "stable" if a

clost to ontimal solution to the problem (X ,g) is close to optimal for

(X,g) provided (X ,gq) is "close enough" to (X,g).

One group of results characterizes stability of optimal stopping times in

terms of a corresponding but simpler property for the excessive majorants

associated with the problems by the theory. For example the following

paraphrases the characterization for c-stability. Here and below, if Xi  is a

nrocess and g. a reward function, then wi i will denote the the smallest

i
excessive majorant of g with respect to X



We prove the following:

Let X be a process and let g be E -measurable, bounded, lower C -

continuous and, if X does not have finite lifetime, nonnegative and zero

at A. Then (X,g) is c-stable if and only if, for each xcE and E >O,

7t 1rg(x) ng(x) + e whenever XI is close enough to X. A similar result

holds for stability except that one only gets sufficiency and several technical

assumptions have to be added. Still, these results represent a considerable

reduction of the problem since quite a lot is known about the structure of

excessive functions. Also, they can be used directly to show that the one

and two dimensional Wiener processes are stable as are the one and two

dimensional symmetric random walks. They can also be used to show stability

of the classical nonsymmetric random walks on the integers (although, here,

somewhat stronger forms of stability are obtainable).

Another class of results concerns stability in the setting of finite

lifetimes. The metric used reflects the closeness of the lifetimes and very

strong results are obtained. Essentially in this setting one always has

both kinds of stability for optimal stopping times. These results are shown

to Inlv the stability of the optimal replacement problem in the event that

the expected values of the lifetimes are also finite. Since such an assumption

is reasonable, this constitutes a very satisfactory result.

This work is contained in "Stability of optimal stopping times for Markov

processes", UNCC - Technical Report (1982).

I). AN ITERATIVE SCHEME FOR APPROXIMATING OPTIMAL REPLACEMENT POLICIES.

.et X=X t , tO be an arbitrary stochastic process with augmented state
A

space E and lifetime X = inf{tX t = A}. We analyze the following iterative

technique. Let b, E g(XX)/E (X). Consider the problem of maximizing the



criterion *(b,r)= b1E (T)-E g(x for T<X. If we are interested in a

generalized c-optimal policy, then tolerances x>0 and S>0 are

determined in terms of X,g,X and c so that, if a 0-optimal nolicy T

for (bl,T) gives i(b,T)(ct then X is already c-optimal, otherwise

take b, = E g(X )/EO( and repeat the steps on the criterion

0 
0

*(b2,t) = b2E (T)- E g(X T). Under very reasonable assumptions on g (it must

be Dositive and bounded away from zero), it is shown that this iterative method

will supply a generalized c-optimal replacement policy. We further implement

this scheme on a computer for certain Markovian damage models. Tn doing so, the

discrete approximations which are required are fully justified and some feeling

for the speed of convergence of the procedure is obtained. The iterative scheme

itself is very fast. Solving the related optimal stopping problems using

dynamic programming techniques is, however, very slow.

These results appeared in "An Iterative Scheme for Approximating Optimal

Replacement Policies", Reliability Theory and Models, M.S. Abdel-Hameed,

E. ginlar and J. Quinn, Editors, Academic Press, New York, (1984).

J). ACCELERATED LIFE TESTING OF SYSTEMS WHOSE WEAR IS GOVERNED BY A CONTROLLED

ODE.

A device is composed of a material with defects, perhaps received in

manufacture. Let x denote the size of a given defect. Ther is a threshold

value B for x such that the device fails when x = B. The device is used

in an environment with m-states v (SS 2 .... ' ,s). For fixed state vector

v, we assume that defect size grows with time according to an ODE of the form

(1) dx/dt = h(x,v) > 0



We also assume the existence of a sigma-finite measure n on (O,B] such that

n(d,B) is strictly increasing in d,

n(d,B) <- for all d>0, and

if A C(O,B] then inside a unit quanity of the

device material we have P(k defects belonging to A)

(n(A)) k e-n(A).k!

If s. is the ith environmental state then
1

(a) A s. fatigue test consists of subjecting
1

the device to a fixed s. stress level until
1

it fails. Time to failure is recorded.

(b) A s. dynamic test consists of subjection of1

the device to stress s i(t) =ct for a constant

c. Stress at failure is recorded.

Let Fi(t) and D.(s) denote the distribution functions for the fatigue and

dynamic tests, respectively. The ODE(I) is termed si  functionally seperable

if

h(x,v) = H(x,vi)g(xi(t)) where

vi  =  ( S,...,s i _ 1 'S i+ 1' '' Sm "

Theorem: The following are equivalent

(a) (1) is s. functionally separable.1

(b) F1(t) =F 2 (t) for different stress levels

and s2 and a constant c(s1 ,s2).

(c) F (t) = F2 (q(t)t) for different stress levels

sI and s2 and a function q determined by

sI and s2.



Provided that the ODE (1) is functionally separable, it turns out that the

constant c can be determined statistically from dynamic test data.

Details may be found in "Accelerated Life Testing of Systems Whose Wear

is Governed by a Controlled ODE", UNCC - Technical Report (1986).

K). OPTIMAL STOPPING AND REPLACEMENT FOR WEAR MODELS INCORPORATING CONTINUOUS

WEAR.

Tet X ,t O be a Markov process with a finite state space

E= x- ,x29 ...,x n}. While X is in state x., the wear increases by jumps

according to a Lvv process with Levy measure v(xi,dy) and continuously at

a rate g(x.). Thus, if L(x.)u denotes the value at time u of the x.th

L~vy nrocess and X is in state x. for s-u< t then the wear accumulated

over this time interval is given by

fs g(xu)du+L(xi) (t -s)

Every change of state from x. to x. is accompanied by a jump in damage
1 J

determined by adding to f(xi,x.) an additional random amount of damage

w(x.,x.) with distribution F(xi,x.,-). If the wear starts at level y 0

and X jumps at times 0 = t0 < t I < .... < tk )t then

Yt = Y +  
g(x s)dS +  Efxt

i=0 +

k- I k
+ E W xt ix )+ Y0 Ttx)(t td

T =. w wm as m l i e wi i l ill -t

To model. wear we must also model failure which involves killing the wear



process. Here we restrict ourselves to killing by a continuously distributed

random threshold with distribution G, let G= 1 -G. Thus (X t,Y ) lives

as long as Y v'* where y* has distribution G.

A wear model is termed purely continuous if it is of the form

t

Y = y 0  + Jg(x)dS"

If an observer can observe the whole process (X t,Y t ) then the optimal

stopping and replacement theory for Markov processes applies. However, we

assume that only the second component is observable. Tn this case the

process ceases to be Markov.

The optimal stopping problem for purely continuous models has a complete

solution and the optimal policy is always a control limit policy.

The optimal replacement problem, even for purely continuous models, does

not have an implementable 0-optimal policy.

We do show, however, how to find e-optimal replacement policies.

Details may be found in "Optimal Stopping and Replacement for wear models

incorporating continuous wear", UNCC - Technical Report (1986).

L). OPTIMAL REPLACEMENT WITH NON CONSTANT OPERATING COST.

Let X t:t). O be a non-decreasing Markov process taking values in

R+ = (0, =) be a model for the wear of a device. Let Y be independent of

Xt:t0 and take values in R + . Y is to be taken as a random threshold,

that is the device fails at

a = inf{t>O:X t Y}.

Models of this type have been studied by amny including Abdel-Hameed.



Let f(x):)O be continuous and be the operating cost per unit time when

the device is at wear level x. Let g(x)>1O be the cost of replacing the

device at wear level x, if replacement occurs before failure. And let

c be the cost of replacement at failure. When the device is in operation,

at each moment of time one can decide based upon the wear level whether to

stop and replace the device by a new one or continue to operate it. If

failure occurs while operating, one must immediately replace the device by

a new one. The decision rules then are stopping times, that is functions

T Q-R +  Q=sample space

subject to the technical restrictions of

(T<t) Ft =Cr(x s :O< s<t).

TA

A=inf f f(x )ds+g(x)I(C<) +c o (

0

The lone run average optimal replacement problem is to determine t so

that o)

[ f f(x )ds+ g(x )I6 + c 0 1( >3

E0 r[ c].

explain the results it is necessary to introduce some preliminaries.

L~et

G(x) =P(Y<x) and G(x) -G(x).

Let

r(x) = AG(x) where AG(x) = lim E [G(x )] -G(x)
rWwe= t tG(x) t

SMAL-bt

mo



D f (xt)dt + c

v= I ol0

E a]

and

(Ax[ fo G(x t) (f (x t)+ c 0v(x t)V)d t]
(A) V0(x) = (x

Result 1. It is shown that

X= lim V a(0)

where V( (x) is a solution of a quasi-variational inequal and is the value

function of the discounted optimal replacement problem. Possible numerical

methods are available for solving for Va (x).

Result 2. In the case that

X <V+ pr(x) where p= SUPv (x)

xO0
~and

g(O) > 0,

it is proved that the optimal policy is

=inf{t:V(xt )=(x t)g(xt )+c 0G(x t)}

where V(x) is a solution of a quasi-variational inequality. Possible

numerical methods are available for solving for V(x).

Result 3. If X = V then t- , that is the do nothing policy is optimal.

A<V if and only if {x:g(x) <V 0 (x)} is non empty. This latter condition



can be checked easily since (A) is compatable given the model. If

{x:g(x) <V 0 (x)}= , then X=V and the do nothing policy is optimal.

Details of these results are in "Long Run Average Optimal Replacement

Problem", UNCC Technical Report (1986).

N). CONFERENCE ON STOCHASTIC FAILURE MODELS.

In June 1983 we hosted a conference on Stochastic Failure Models. The

proceedings of this conference contains many valuable papers on Reliability

in general and specifically on Failure Models.



Papers and Reports

Abdel-Hameed, M.S., Life distributions of devices subject to a Lvy wear
process, Mathematics of Operations Research, 9, 606-614, (1984)

and Proschan, Frank, Generating Positively Correlated Random
Variables from a Sequqnce of Independent Random Variables with Symmetric

Logarithmically Concave Densities, UNCC-Technical Report, August, (1984).

Abdel-Hameed, 71.S., Life distribution properties of devices subject to pure

Jump damage process, J. Aopl. Prob. 21, 816 - 825, (1984).

A Power Transformation Exponential Regression Model for

Censored Failure Time Data, UNCC-Technical Report, (1984).

Quinn, Joseph, Conservative and dissipative parts of nonmeasure preserving

weighted composition operators, Houston Journal of Math, 8, 575-586, (1982).

,__On the stability of optimal stopping times for Markov chains,

UNCC-Lechnicat Report No. 2 (1981).

• Stability of Optimal Stopping Problems for Markov Processes,
UViCC-Technic4i1 Report No. 1 (1982).

, Stability of Optimal Replacement Policies, UNCC-Technical

I-',, rt (1983).

, An Iterative Scheme for Approximating Optimal Replacement
Policies, Reliability Theory and Models, Mptes amd Reports in Computer

Science and Applied Mathematics, M.S. Abdel-Hameed, E. inlar and

Joseph Quinn, Editors, Academic Press, Orlando, (1984).

_ Optimal. Stopping and Replacement for Wear Models Incorporating

Continuous Wear, under preparation.

Andeson, R.F., Goldring, T., and Quinn, Joseph, Accelerated Life Testing of
Ssvtems whose wear is governed by a controlled ODE, under nreparation.

Andersnn, R.F.. Replacement with Non Constant Operatint Cost, under

preparation.

M.S. Abdel-Hamced, E. ginlar and Joseph Quinn, Editors, Reliability theory and
Models, Notes and Reports in Computer Science and Applied Mathematics,

Academic Press, Orlando, (1984).



.4


